Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1365264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559765

RESUMO

Introduction: Tilia amurensis Rupr (T. amurensis) is one endangered and national class II key protected wild plant in China. It has ornamental, material, economic, edible and medicinal values. At present, the resources of T. amurensis are decreasing, and the prediction of the distribution of its potential habitat in China can provide a theoretical basis for the cultivation and rational management of this species. Methods: In this study, the R language was used to evaluate 358 distribution records and 38 environment variables. The MaxEnt model was used to predict the potential distribution areas of T. amurensis under the current and future climate scenarios. The dominant environmental factors affecting the distribution of T. amurensis were analyzed and the Marxan model was used to plan the priority protected areas of this species. Results: The results showed that Bio18, Slope, Elev, Bio1, Bio9 and Bio2 were the dominant environmental factors affecting the distribution of T. amurensis. Under the future climatic scenarios, the potential suitable areas for T. amurensis will mainly distribute in the Northeast China, the total suitable area will reduce compared with the current climate scenarios, and the general trend of the centroid of suitable habitat will be towards higher latitudes. The SPF value of the best plan obtained from the priority conservation area planning was 1.1, the BLM value was 127,616, and the priority conservation area was about 57.61×104 km2. The results suggested that climate, soil and topographic factors jointly affected the potential geographical distribution of T. amurensis, and climate and topographic factors had greater influence than soil factors. Discussion: The total suitable area of T. amurensis in China under different climate scenarios in the future will decrease, so more effective protection should be actively adopted.

2.
Front Plant Sci ; 15: 1304121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486852

RESUMO

Chionanthus retusus (C. retusus) has a high economic and medicinal value, but in recent years it has been included in the list of China's major protected plants and China's Red List of Biodiversity due to the serious destruction of its wild germplasm resources. Based on 131 sample points of C. retusus, this study simulated potential habitats and spatial changes of C. retusus in the 21st century using the Maxent model combined with the geographic information system ArcGIS, predicted prioritized protected areas by the Marxan model, and assessed current conservation status through GAP analysis. The results showed that (1) when the regularization multiplier was 1.5 and the feature combinations were linear, quadratic, and fragmented, the area under the curve of the subjects in the training and test sets were both above 0.9, the true skill statistic value was 0.80, and the maximum Kappa value was 0.62, meaning that the model had high accuracy; (2) Temperature seasonality, annual precipitation, min temperature for coldest month, and precipitation of wettest month had relatively strong influences on species' ranges. (3) The moderately and optimally suitable habitats of C. retusus were primly located in the areas of southwestern Shanxi, central Hebei, western Henan, Shandong, Shaanxi, Anhui and Hubei; (4) Under different future climate scenarios, the area of each class of suitable habitat will increase for varied amounts compared to the current period, with a general trend of expansion to the south; (5) The C. retusus priority protected areas were mainly located in most of Shandong, southern Liaoning, southwestern Shanxi, western Henan, and central Hebei, and its conservation vacancy area was relatively large compared to its protected area. These results will provide scientific strategies for implementing long-term conservation of C. retusus in China and similar regions under warming conditions in the 21st century.

3.
Microb Ecol ; 77(4): 905-912, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30417222

RESUMO

The role of dispersal in the assembly of microbial communities remains contentious. This study tested the importance of dispersal limitation for the structuring of local soil bacterial communities using an experimental approach of propagule addition. Microbes extracted from soil pooled from samples collected at 20 localities across ~ 400 km in a temperate steppe were added to microcosms of local soils at three sites; the microcosms were then incubated in situ for 3 months. We then assessed the composition and diversity of bacterial taxa in the soils using 16S rRNA gene amplicon sequencing. The addition of the regional microbial pool did not cause significant changes in the overall composition or diversity of the total bacterial community, although a very small number of individual taxa may have been affected by the addition treatment. Our results suggest a negligible role of dispersal limitation in structuring soil bacterial communities in our study area.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Monitoramento Ambiental/métodos , Microbiologia do Solo , China , Pradaria
4.
PLoS One ; 10(5): e0126962, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961300

RESUMO

The neutral theory of biodiversity has emerged as a major null hypothesis in community ecology. The neutral theory may sufficiently well explain the structuring of microbial communities as the extremely high microbial diversity has led to an expectation of high ecological equivalence among species. To address this possibility, we worked with microcosms of two soils; the microcosms were either exposed, or not, to a dilution disturbance which reduces community sizes and removes some very rare species. After incubation for recovery, changes in bacterial species composition in microcosms compared with the source soils were assessed by pyrosequencing of bacterial 16S rRNA genes. Our assays could detect species with a proportional abundance ≥ 0.0001 in each community, and changes in the abundances of these species should have occurred during the recovery growth, but not be caused by the disturbance per se. The undisturbed microcosms showed slight changes in bacterial species diversity and composition, with a small number of initially low-abundance species going extinct. In microcosms recovering from the disturbance, however, species diversity decreased dramatically (by > 50%); and in most cases there was not a positive relationship between species initial abundance and their chance of persistence. Furthermore, a positive relationship between species richness and community biomass was observed in microcosms of one soil, but not in those of the other soil. The results are not consistent with a neutral hypothesis that predicts a positive abundance-persistence relationship and a null effect of diversity on ecosystem functioning. Adaptation mechanisms, in particular those associated with species interactions including facilitation and predation, may provide better explanations.


Assuntos
Bactérias/classificação , Biodiversidade , Biomassa , Ecossistema , Microbiologia do Solo , Bactérias/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...